Follow Us On Facebook Designer Diamond Jewelry, Certified Diamond Rings, Diamond Engagement Rings, Diamond Anniversary Rings, Buy Diamond Rings Online, Great Deals on Diamond Rings, Diamond Rings Reviews, Coupons Feedback  Ruby Diamond Rings, Ruby Rings, Ruby Engagement Rings, Ceylon Ruby, Thai Ruby, Burma Ruby, Buy Ruby Rings Online, Ruby Rings Reviews, Coupons, Sale & Clearance Search   Engagement Rings, Diamond Engagement Rings, Antique Vintage Engagement Rings, Buy Engagement Ring Online, Engagement Rings Jewelry Store, Engagement Rings Reviews, Sale & Clearance, Tips on Buying Engagement Rings Call Us  Diamond Wedding Rings, 14K Gold Wedding Bands, Platinum Wedding Rings, Mens Wedding Bands, Womens Wedding Rings, Milgrain Gold Bands, Celtic Wedding Rings, Yellow Gold Rings, White Gold Bands, Buy Wedding Rings Online, Wedding Bands Reviews, Sale & Clearance E-mail Us  Ruby Diamond Rings, Ruby Rings, Ruby Engagement Rings, Ceylon Ruby, Thai Ruby, Burma Ruby, Buy Ruby Rings Online, Ruby Rings Reviews, Coupons, Sale & Clearance Shopping Cart  Designer Genuine Natural Gemstone Jewelry, Ruby Jewelry, Ruby Jewelry, Sapphire Jewelry, Columbian Emerald, Burma Ruby, Ceylon Sapphire, Buy Gemstone Rings Online, Gemstone Jewelry Reviews, Coupons, Clearance Checkout  Great Customer Reviews, Feedaback on Facebook, Twitter, Youtube, Google+, Compare Prices, Buy Rings Online, SALE & CLEARANCE Order Status

Diamond Jewelry Buying Guides - Buying Diamond Rings Online Tips


Diamond Information Center

What is align Diamond? All About Diamonds

Facts about DiamondsDiamond FAQs

Diamonds in Poetry Diamond Dictionary

De Beers, The Diamond CartelDebeers Diamonds

History of DiamondsHistory of Diamonds

Buying Diamonds as an Investment?Diamond Certifices

Blood Diamonds, Conflict DiamondsBlood Diamonds

Conflict Free Diamonds Conflict Diamonds

Fight against Conflict DiamondsKimberly Mining

Why Diamonds are Popular?Diamonds or Gems

Why Diamonds are Popular?Types of Diamonds

4 Cs of DiamondDiamond 4 Cs

How to Recognize a Fake Diamond?Real/Fake Diamond

Identifying a Well-Cut DiamondIdeal Cut Diamonds

World's Famous Diamonds Famous Diamonds

World's Largest DiamondsLarge Diamonds

Famous Diamond Cutting CentersDiamond Mining

How to Care for Diamond Jewelry Diamond Care

Enhancements to DiamondsEnhancements

What is Diamond Fluorescence?Fluorescence

Shop Diamond Bridal Rings Colored Diamonds

Know Diamond Ring SettingsBlue Diamonds

Tips for Buying Jewelry OnlinePink Diamonds

Diamond Buyer's Guide Red Diamonds

Free Diamond Appraisal with PurchaseYellow Diamonds

What is Diamond GradingPurple Diamonds

See GIA's Diamond Grading ReportGreen Diamonds

See GIA's Diamond Grading ReportJewelry Industry Affiliations

How to Buy align DiamondBuying Diamonds

How to Buy align DiamondBuying Diamond Ring Online

Online Shopping Tips
Buying Diamond Ring Online
Buying Emerald Ring Online
Buying Ruby Ring Online
Buy Sapphire Rings Online

Buying Diamond Jewelry Online, Online Jewelry Shopping

Buying Jewelry Online

Certificate of Authenticity, Certified Jewelry, Reliable Jewelry Shopping

Only Authentic Jewelry
Jewelry Social Bookmarking

Sndgems jewelry guides are easy to use, interesting and helpful guide to buying jewelry onle. Our jewelry guides are indispensable guide to judging jewelry characterstics, distinguishing genuine from imitation, making wise choices, useful to all type of consumers, from professional jewelry to online searchers.  Our diamond guides help everyone in viewing diamonds as gemologists, diamond experts, diamond dealers, experienced lapidaries, diamond buyers and online customers.  Our diamond guides dissects each aspect of diamond value in detail with a wealth of diamond grading information. Our gemstone guides help everyone in viewing colored gemstones as gemologists, gem dealers, experienced lapidaries, gem buyers and online customers.  Our gemstone guides dissects each aspect of ruby, sapphire, ruby value in detail with a wealth of gemstone grading information. Our guides offers step-by-step instructions for how to examine and judge the quality and craftsmanship and materials even if you dont know anything about jewelry.  If you're thinking of buying jewelry online this guide is a best place to start.  Our guides will help you to know about jewelry details such as finishes, settings, flaws and fakes. Our guides cover diamonds, gemstones, jewelry craftsmanship, treatments, diamond and gems sources, appraisals. There is something for everyone.

How To Easily Identify Genuine Gemstones From Fake Stones

Every gemstone has its own unique identity and genuine gemstone identification is a process that involves identifying gemstones structure and chemical properties. Genuine gemstone identification requires gemological knowlege, gemology tools and a well trained experience eye. There are many ways to identify a real gem from a fake one.

With new technology synthetic and imitation gemstones have flooded the jewelry market. Synthetic and imitation gemstones have a market in cheap imitation jewelry as they are affordabile, stunnig color and there is unlimited supply. As a result genuine gemstone identification has become much more important now a days as it is difficult to differentiate between genuine and fake gemstones. For people seeking quality and value and invest lot of money it is almost essential to learn about genuine gemstone identification process. Especially buying jewelry online trust is the biggest factor so everyone in seach for fine quality gemstone jewelry should get themselves aquainted with this process.  If you are a gem dealer or jeweler you for sure need to be able to accurately evaluate the exact value of the gemstones and know if they are genuine or synthetic stones.  Gemstone Appraisals for insurance value are bt law required to disclose gemstone treatments and enhancements, and in order to provide this information you will have to be able to identify gemstones genuineness, grade, value and and if any treatments gave been done.  First we need to learn about gemstones and once we are familiar with gemstones then by observation and with the help of magnification tools you can identifying a gemstone.   

Determinative identification skills may take many years to develop, and may involve the use of an array of expensive equipment for measuring everything from density to various optical properties or even thermal conductance.

Confirmative identification of gems is much easier to learn and may often be accomplished with few simple tools and your eyes. Know we'll talk about confirmative gemstone identification.

1: Gemstone Knowledge & Observation:

Gemstones identification can be made easier by using the unaided eye and 10 power magnification in determining the visible gemstone characteristics.  By doing this you will be able to properly identify gemstones.  First we need to know about gemstones tone, hue, saturation, dispersion and transparency. 

In order to properly visually analyze a gemstone we need set up an area where we should use neutral colored background with proper lighting. We'll need some basic jewelry supplies like a gemstone cleaning cloth, incandescent lighting, ultra violet lighting, daylight equivalent lighting, a 10 magnification loupe and tweezers. 

Gemstones Optical Properties

Gemstone Color:  Color is the most important charaterstic of a gemstone. In gemstone identification color is not the diagnostic in most of the cases as many stones have the same color. Color is produced by light  as it is elctromagnetic vibration at certain wavelengths. Depending upon the wavelength picked or absorbed out of the entire spectrum, the remaining mixture produces a certain color. The metals and their combinations especially chrome, iron, cobalt, copper, manganese, nickel and and vanadium, absorb certain wavelengths of light and cause coloration. Pick up a stone in question and hold it up very close to your eye so that you can look into the table. You must hold it very close without touching - almost like inserting a contact lens, but again not touching. Look literally through the stone at a distant source of light such as a lamp or light bulb. You will see a number of reflections of the distant light source as they bounce around within the stone. Carfully look at the stone to determine what stone color hue and the stones color tone level ranging from very light to very dark.  Color comparison charts showing the range of hues found in colored gemstones will be helpful to use when determining the correct hue seen in a particular stone.

Gemstone Color of Streak: The colors of gems in the same group can vary geatly.  A beryl can have all the colors of spectrum but can be colorless also. This colorness is the true colors and helps in gemstone identification.

Gemstone Transparency: A factor in the evaluation of most gemstones is their transparency.  Inclusions of forein matter and air bubbles in the interior of crystal effect the transparency. Grainy or fibrous aggregartes are opaque because rays of light are refracted.

Gemstone Color Change: The color of gemstones is altered over time. Generally color changes by natural effects is not common.

Light & Gemstones Color Effects: Many gemstones show light effects or color effects which do not relate to their color and not because of impurities or chemical composition. These effects are caused by reflection, interferance and refraction. These types of light or color effects will appear as sparkling, shimmering, glowing, and color change.  Knowing what type of light and color effects is occurring in a gemstone can help in gemstone identification.  Common light and color effects are adularascence, asterism, aventuriazation, chatoyancy, iridescence, and color change. This effects makes the stones more desirable in that they add such a rare beauty and captivating effect to a gemstones overall look.

Gemstone Luster:  The luster of a gem is caused by reflection. It is dependent on the refractive index and the nature of surface but not on color. The higher the refraction, When judging luster reflect light off of the area of the stone that has the been polished well.  The most desirable luster is admantine to vitreous and the most undesired luster is greasy, silky, waxy lusters. The lower facets strengthens lustrous appearance.

Gemstone  Dispersion:  A play of color which comes about through dispersion of the white light into spectral colors.  The dispersion is different from one gemstone to another.  Color gemstones tends to mask the dispersion effection and will help in gemstone identification. Dispersion is measured by a refractometer and other devices. Diamonds have the highest color dispersion so called fire and it helps identifying diamonds from its simulants.  Dispersion is an important factor in gemstone identification. Dispersion tables can be used in identification of a gemstone. The strength of a stones fire play will help you determine the what kind of stone you have.

Gemstone  Weight:  The weight of a stone compared to its size can also help in gemstone identification as fake stones weight more or less. 

Gemstone Double Refraction:  In some gemstones ray of light is refracted when entering the crystal and at the same time divided into two rays and this phenominan is called double refraction. The double refraction can be useful in gemstone identification. It is expressed as the difference between highest and lowest refractive index.     

2: Gemology Testers

Gemologists use Gemology Testers to accurately find a real gem from a fake one. Every gemstone mineral species have their own unique optical and physical properties, scientific data is needed to prove these properties in order to make a positive identification.  The process involves first in determining gemstones optical and physical properties and then to relate to which mineral species they belong to.  This process requires several gemological tests that need to be performed.

There are many geomology testers so a good knowledge of gemology testing equipment will help you a lot in accurately indentify gemstones.  The most import thing in gemstone identification is to keep your gemstone clean and free of lint and oils using the gemstone cloth. This will provide more accurate results during gemstone identification testing. Some of the most important test to conduct will be using the microscope and loupe, refractometer for refractive index, Chelsea filter, and a polariscope.

Microscope: A gemological microscope is the microscope used by jewelers and gem stone experts. These microscopes are especially created to view precious stone samples and the pieces of jewelry that contain them. The proper ways of using gemological microscopes are on the article below:
Gemological microscopes are usually used to inspect the authenticity of gemstones and in the design, creation, and repair of jewelry. And because these microscopes are used with items of value, it is important that these would be used properly to enhance their usefulness.Here are the steps on how to properly use gemological microscopes:

1. Place the microscope on a flat surface. 
When using gemological microscopes, or any type of microscope for that matter, always make sure that it is placed on a leveled surface before starting any observation tasks. Make sure that the microscope is far from any water source as well. When using the microscope, use a table or a chair that matches your height as its user. That way, you won’t be straining your back while looking at the sample.

2. Prepare the microscope for first line calibration. 
After setting the gemological microscope on its proper place, calibrate its focus using the lowest objective available. Most gemological microscopes have a single objective lens, although it is capable of several magnification levels. Make sure that the microscope is set at the lowest level. Look through the eyepiece and make sure everything is aligned and in order. You might also want to check the manual to aid you in this process.

3. Place the sample on the stage. 
A gemological microscope has a special stage. Its stage is capable of holding gemstones regarding of their cut. Empire cut type of stone is most accommodated. Set the precious stone you are going to observe properly at the center of the stage. There would be controls for the stage’s holder. Use it accordingly.

A gemological microscope also comes with different holders for use with gemstones. There are holders available for wire stones and stones with rounded edges. For larger gems, a stage plate can be used.

4. Choose with light source to use. 
Most gemological microscopes are equipped with three different light sources namely bright field, dark field, and incident fluorescent illumination systems. Bright field is the most common type of an illumination system. With it, you will be able to inspect the gemstone against a white background. This is perfect for gemstones of darker color.

The dark field illumination system is the opposite of the bright field illumination system. This lighting technique would produce an image of the specimen against a dark background. It is perfect for rubies and emeralds. It is the best technique used if the shape of the gemstone is of primary concern.

The incident fluorescent illumination system produces reflected light on the sample. As such, it is perfect to inspect the clarity and color of diamonds. The fluorescent light that is used in this type of an illumination system is perfect for this application because fluorescent lights don’t put any light stains on the sample under observation.

5. Focus on the gemstone. 
Use the different magnification power available on the microscope. There are also auxiliary objectives that can be used with the system, ranging from 1.5x to 2x magnification levels. There are also auxiliary eyepieces. The standard is usually 1x but there are 10x, 15x, and 20x eyepieces available in the market today. Use the right objective-eyepiece combination for optimum results. These microscopes are also equipped with knobs for fine and coarse focusing. It is also possible to control the intensity of the light source. Learn what the knobs found in the microscope are for and used them as intended.

Gemological microscopes may also have rotary and tilting bases. These are going to be helpful in focusing on the specimen more. Change the angle of inclination of the base from the arm so that the sides of the specimen can be observed as well.

These are the steps on how to properly use gemological microscopes. Follow these steps so that you will be able to properly observe precious gems without compromising their value. And by doing all of these, the safety and functionality of the microscope will be ensured.Gem stone experts need one important tool in their jobs. And that would be a precision microscope that is capable of inspecting diamonds, emeralds, rubies, and all other types of precious stones. These microscopes are complex microscopes that are equipped with multiple illumination systems to enhance the image of the samples.


Jewelry Loupe: Loupe is used to detect chips, cracks, scratches, sharpness of edges, symmetry in cutting, presence and types of flaws.  The 10x triplet jewlers loupe is an essential tool to own. 

Instructions on how to use these 3 simple tools to identify gemstones are included. Using a 10 power loupe is a requirement in stone identification, one with a triplet lens will make it easier to use the loupe.  Get yourself acquainted with using a loupe and a tweezers at the same time, it is important to be able to quickly pick up a stone and view it under a loupe.  A loupe will help in finding important information about the stone such as doubling, surface characteristics, and inclusions. 

Jewelry Refractometer: Each type of gem has its own refraction index, a measurement calculated with a refractometer. The instrument can help you identify what kind of gem or stone you have.


When light travels through an object, it bends, or is refracted at an angle. It changes both directions and speed, and you can measure the refraction to determine the angle. Reflection is another measurement of light, which is the light that bounces off the surface of a gem. Each gemstone has its own refractive index, which is a number that represents the angle that the light is refracted at for that gemstone. You can use the refractive index to identify different kinds of gems.
Refractometer measure a refractive index up to 1.81 usually, which can exclude some higher stones like diamonds.


Materials with a crystal lattice formation can exhibit birefringence. This means that as the light passes through the gem, it splits, and one part is refracted while the other passes straight through. An example of a gem that would show this would be quartz. Almost all refractometers can measure this, which will give a more accurate refractive index for the gem.

Refractive Index

The refractive index is a calculation involving both the incident angle and the refractive angle. The incident angle is the light's angle as it enters the gem, and the refractive angle is the angle that light bends at once it is inside the gem. The ratio between the two angles will equal the refractive index, which is different for each mineral.

Gem Identification

A refractometer measures the refractive index of the gem. You use refractive index liquid to eliminate air between the refractometer and the gem so the light will pass straight into the stone. The refractometer shines the light through the stone, and you can see it on a scale through the eyepiece. There are many other tests that determine the type of gem without a refractometer. You can test hardness, color, and morphology of the stone, all of which will help you get an even clearer view of what you have.

Alternative Meters

In addition to
refractometers utlilized for gem identification, there are also gem filters and reflectivity meters. Gem filters are the least expensive. When looking at a gemstone through a gem filter, you will only see certain colors of the light, which will help to identify the stone. Reflectivity meters measure the reflectivity of the stone rather than the refraction index. This is less exact than refractometers, but is still very useful in identifying gems. Lastly, there are gem testers that measure thermal conductivity of stones. You can use them on more types of stones than refractometers or reflectivity meters.

This is THE standard tester for gem testing. It is optical (not electronic), you see a shadow on a scale, read the number, then look it up on standard charts. Can be used with any gemstone that has a flat polished surface, whether loose or set in jewellery (click MORE to see a picture of testing a mounted stone). Note: will not test for diamond.

Supplied in a sturdy box (easily portable) complete with a bottle of refractometer fluid.

Instructions are NOT included with this item, it is assumed that you are either a gemmologist (or a student) or that you will be using a book about gemmology.
Jewelry Polariscope: A polariscope is a gemological instrument that tests for a gemstone being double or single refractive, and will allow us to find the various crystal axis of the stone. Which is where is got its name: Polar-scope..the a scope to see the poles or axis of the stone. Now, if you remember the section on the dichroscope, the use of plane polarized light allows us to see the different colors of light being transmitted by a gemstone. The polariscope, however, allows us to actually see the path that those beams are taking through the stone. By knowing that the stone is double refractive, we can use the optic interference figure to actually find the various optical directions that the light is traveling through the stone, and thereby make identifications based on this information.What it detects: double refraction.

How to use: At the top and bottom of the tube are two filters (Polaroid discs), revolve the top filter until everything in the tube appears dark and place the stone on the platform in the middle (if mounted, you might have to fix the item upright with a spot of blu-tac so that you can see the stone). Now turn the platform so that the stone revolves through 360°.

What you see: If the stone appears to turn light-and-dark it is doubly refractive, if it remains dark it is singly refractive.

For the gemmologist: all crystalline gemstones except for those of the Cubic System are doubly refractive.

For the non-gemmolgist: Moissanite is strongly doubly refractive, diamond is singly refractive. This is, therefore, a very simple and effective method of distinguishing diamond from Moissanite. Instructions: not included.

Dichroscope: The dichroscope is another popular tool, which, like the Chelsea filter, is considered invaluable for distinguishing certain stones from similar gems. It can only be used on stones that are transparent and are able to transmit light. It is used to differentiate between and identify stones with similar colors. When looking through the dichroscope, the user should see two squares/rectangles, side by side. When viewing a stone, the user will see that it is either a single or a double refracting stone. What this means is that if the same color and the same shade is visible in both squares/rectangles, then the stone is single refracting. If the two boxes have varying colors/shades, then the stone is a double refracting stone, or a dichroic stone.  Sometimes, depending on the angle/direction of the light, a stone may have three colors, meaning when a pair of colors is seen through the dichroscope, and the direction at which the stone is being viewed changes, one of the original colors is replaced with a new color, resulting in a total of three colors; this is called a trichroic stone.

Andalusite - Yes (trichroism)
Apatite - Yes, weak
Beryl - Yes, but usually weak
Chrysoberyl - Yes, but usually weak
Danburite - Yes, weak
Diopside - Yes, weak
Garnets - No (occasionally a color change Garnet will show an anomaly)
Iolite - Yes
Opal - No
Orthoclase - No
Peridot - Yes, but very weak
Quartz - No
Sapphire - Yes
Scapolite - Yes
Spinel - No (I have seen a couple that were color change and show an anomaly)
Sphene - Yes
Spodumene - Yes (Kunzite, Hiddenite...)
Tanzanite - Yes
Tourmaline - Yes
Topaz - Yes
Zircon - Yes

Ultra Violet Light Source: A gems reaction to UV (Ultra Violet) light will determine if it contains fluorescence or phosphorescence.  In some cases the strength and the color of the fluorescence will be a great indicator of the stone species or if it’s genuine or synthetic material. UV light sources are available in smaller and more affordable hand held models or in larger type models that have the option of controlling the amount of energy with short wave and long wave settings.  Keep stones clean and free of lint and oils by using a lint free gem cloth, the presence of these can affect the stones fluorescence.
The table below shows the colors of majority gemstones under UV lights (SW/LW), and X-ray fluorescent light.

Fluorescence of Common Gemstone
Gem LW Ultraviolet Fluorescence Color SW Ultraviolet Fluorescence Color X Ray Fluorescence Color
Ruby Orange, Yellow, Blue, Violet,Green Orange,Yellow, Blue, Green, Violet White,Yellow, Green, Blue
Sri Lanka Sapphire Red Red Red
Sri Lanka Yellow Sapphire Orange Orange Orange
Synthetic Orange Sapphire Red,Orange Red,Orange Red
Synthetic Green Sapphire Red,Orange Orange  
Colorless Sapphire Orange Orange Red
Ruby Spinel Red,Orange Orange Red,Orange
Synthetic Imitation alexandrite corundum Red Red Red
Emerald Red,Green Red Red
Topaz Orange, Yellow   Orange
Alexandrite Red  Red  
Apatite Yellow,Green,Violet    
Zircon Yellow Yellow Yellow,Violet,Blue
Danburite Blue Blue Violet
Flourite Blue,Violet Blue,Violet Violet
Moonstone Blue   Blue
Scapolite Orange,Violet Orange,Violet,Blue Orange
Diopside Violet    
Kunzite Orange    
Sodalite Orange spots   Yellow,Blue
Lapis Lazuli Orange spots Orange,Violet Yellow,Blue
Colored Glass Yellow,Green,Blue Yellow,Green,Blue Blue(some)

Spectroscope: A spectroscope was an early instrument for visually studying dispersed light. These devices included either a prism or diffraction grating for dispersing the light, telescopes for viewing narrow regions of the dispersed light, and protractors or other calibrated scales for measuring the position of a narrow region. Each gem has its own distinct way of how it absorbs light; a spectroscope is used to identify each stones unique spectrum pattern.  A stones chemical composition and crystal structure will determine what part of visible light it will absorb influencing the color of the stone.  Absorption spectrums usually consist of dark lines or bands and dark areas referred to as a cutoff.  The placement of these lines and bands on the scale which represents the range of visible light will help determine the mineral species the stone belongs to. The spectroscope is used to analyze light passing through a stone. White light is a combination of all the colors of the visible spectrum: red, orange, yellow, green, blue, indigo, and violet. This is the rainbow we see when light travels through a prism. When white light travels though a stone, one or more of the wavelengths that produce color are absorbed by the gem. The colors that are NOT absorbed are the colors seen when we look at the stone.

The wavelengths that are absorbed by the stone are seen in the spectroscope as vertical black lines in the spectrum. Each stone has a unique absorption spectrum (like a fingerprint of the stone) When identifying a stone we look for a spectrum that is characteristic for that stone.

The wavelengths that are absorbed by the stone are seen in the spectroscope as verticle black lines in the spectrum. Each stone has a unique absorption spectrum (like a fingerprint of the stone) When identifying a stone we look for a spectrum that is characteristic for that stone.

Below is a quick reference of simulated absorption spectrums for common gemstones. There are many different signature spectrums within each type of gem depending on locality, depth/saturation/hue of color, and of course the specific chemical impurities that happen to affect the gemstone's color. This quick reference gives you a generic idea of what light frequencies will be absorbed for each gemstone.

Color Filter:  Some gemstones appear to change colour when viewed through the Chelsea Colour Filter. This colour change helps identify many gemstones, distinguishing ruby from paste; distinguishing garnet (though not all garnets) emerald and aquamarine from paste. The Chelsea Filter also distinguishes many manmade stone such as cobalt-blue glass and blue synthetic spinel from natural blue stones. As with all gem testers, care must be taken since nature does not make gemstones to standard formulae and variations exist.


Hold the filter an inch or two from the eye. Shine a light on the stone with a strong light bulb or torch. The stone may appear to change colour. The filter must be held near to the eye but there is no need to hold the filter close to the stone, even items in showcases can be examined providing they are lit by strong lights.


White light is made up of all the colours of the rainbow (a spectrum): red, yellow, green, blue. Colours are known, technically, as wavelengths of light. A gemstone will absorb some wavelengths and leave the others free to reach the eye. It is these which mingle to give the appearance of colour. Emerald absorbs virtually all the yellow/green wavelengths; the Chelsea Colour Filter filters out all but the yellow/green and deep red wavelengths. Since the yellow/green has already been absorbed by the emerald, only red is left to pass through the filter.


Most emerald will appear to change from green to red when viewed though the filter, paste and other stones remain green/dark though the filter. The brightness of the red depends on the amount of chromium in the stone. There is no chromium in most green stones; in natural emeralds chromium is present in small quantities; in synthetic emeralds chromium is present in large quantities. Therefore paste, peridot, sapphire etc. appear green/dark through the filter; most natural emeralds will appear red (from dull red to bright red) through the filter; synthetic emeralds will often appear a brilliant glowing traffic light red. HOWEVER, some modern synthetic emeralds appear only a dull red and some natural emeralds do not appear red at all. The Chelsea Colour filter, originally designed for testing emeralds, will give a good indication that you may, or may not, have an emerald but will not give a simple YES or NO reading, it is more useful for the testing of other gemstones.


Of GREEN stones the following will remain green through the filter: Enstatite, paste, peridot, sapphire, most tourmaline.

The following GREEN stones appear to change colour when viewed through the filter:

Alexandrite Red in artificial light, brighter red in daylight.

Zircon Reddish

Demantoid garnet Reddish

Emerald Red - see first page and see below.

Aquamarine A murky grey-green.

There is a synthetic corundum which looks like Alexandrite, this will appear the same red through the filter in both artificial light and daylight.

Of RED stones garnets and pastes appear dark red through the filter; ruby (both natural and synthetic) and spinel glow red.

Of BLUE stones:

Paste Red (for dark blue pastes)

to green (for light blue pastes)

Spinel Red (for dark blue spinels

to orange (for synthetic light blue spinels)

Zircon Green

Only one natural blue stone gives distinctive results:

MOST Blue sapphires will appear Blackish


Newcomers to gemmology ask of a gem tester: Is it 100% reliable? The answer is that no gem tester is "100% reliable" because the composition of gemstones is not "100% reliable" - such is the variety in nature. A Chelsea Filter detects the presence of Chromium and Cobalt. Chromium produces the very intense reds and greens of ruby and emerald; cobalt causes the brilliant blue in pastes and synthetic gemstones. The extent of the colour change depends on the amount of chromium or cobalt present.


Red stones containing chromium are mostly ruby (Burma Ruby and synthetic ruby) and red spinel (almost certain to be natural spinel) - all will glow red.

Thai ruby (Siam ruby) and pyrope garnet contain chromium too but they also contain iron which prevents the colour change. Demantoid garnet will appear pinkish.

Red stones which contain no chromium will show no colour change. They will appear a dark red / blackish colour (because the filter is so dark, not much can be seen). These include most garnets and paste.

If you have a parcel of red stones pick out those which glow a brilliant red (synthetic rubies coloured by chromium), those which glow slightly red (natural rubies and natural spinels), those which turn very slightly reddish or pinkish (MAYBE Thai ruby or demantoid garnet), and those which remain their own red darkened by the filter to almost black, pastes and most garnets.


The GREEN stone coloured by chromium is beryl, the best known varieties of which are emerald and aquamarine. The colour change in emerald is to red and, again, the brilliance of the red and the extent to which it appears to 'glow' depends upon how much chromium is in the particular stone and how much iron is present to dull the effect. Synthetic emeralds are coloured with chromium with the result that the red glow seen through the filter can be quite spectacular; the red glow seen in natural emeralds varies from strong for Colombian and Russian emeralds to nil for South African and Indian emeralds. The lack of a colour change to red is an indication that your stone is not emerald, but not proof; a brilliant glowing traffic light red is a good indication that you have a synthetic emerald but not proof.

Three stones which can be confused with emerald are demantoid garnet, grossular garnet coloured by Chromium (Savolite) and tourmaline coloured by Chromium - all will appear red through the Chelsea filter.

How, then, do you distinguish these from emeralds? Green zircon may appear a pinkish colour through the filter. Green garnets have a far 'livelier' appearance than emeralds; emeralds can appear almost 'oily' in lustre, garnets have a brilliant 'fire'. Both tourmaline and zircon exhibit strong double refraction: look into the stone with a good 10X lens and the back facets will appear 'doubled'.

In the case of aquamarine iron dulls the effect almost completely but there is still a colour change from a clear blue-green to a muddy grey-green. Beware: some sapphires also appear 'muddy'.

Alexandrite appears red (see previous page), pastes, green sapphire, enstatite, peridot and most tourmalines will remain dark / green.

Stones which usually show only a slight colour change are green garnet (demantoid), green zircon, and chalcedony which has been stained green - these will appear reddish or pinkish.


The filter is most useful for the detection of cobalt. Cobalt colours glass and synthetic spinel blue, it almost never produces blue in nature. Synthetic spinel is used to imitate a number of stones. The colour change is to red for heavily doped stones (brilliant 'cobalt blue' glass and deep blue synthetic spinels) but is less pronounced in light blue stones, varying from orangey-browns to green. Although a colour change from brilliant blue to glowing red is a clear sign that the stone is manmade, intermediate colour changes can be inconclusive: natural blue spinel can appear very slightly red as can SOME Ceylon sapphires. Most blue sapphires show no colour change, remaining dark blue / blackish.


· Do not touch the filter (use a soft dry cloth to remove dust)

· Do not immerse in liquid

· Keep it folded closed when not in use· Do not allow to become hot, e.g. on a   radiator on in direct sunlight


Immersion Method:  Each stone has its own unique specific gravity, which is the ratio of the weight of the stone compared to the weight of an equal volume of water.  Heavy liquids are liquids that have a known specific gravity, they typically are available in sets of five to six separate liquids each with their own SG (specific gravity) usually ranging from 2.57 to 3.32.  If a stone is placed in heavy liquid and it floats, the SG of the stone should be close or lower then the liquid that it is placed in.  If a stone sinks in the heavy liquids it is an indicator that the stone’s SG is higher then the liquid it was placed in.  Make sure to follow all safety instructions when using heavy liquids since they can be hazardous and could cause harm if not used properly.

Diamond Tester:  Each species of stones conducts heat at different rates, this is called thermal conductivity.  Using a diamond tester will help determine the different rates of thermal conductivity in diamonds and most of its simulants.  Stones like moissanite require using a tester specifically made for separating diamond from moissanite.  Diamonds conduct heat at a higher rate compared to many of its simulants, a tester is able to detect the different rates at which heat is being conducted therefore helping to identify a simulant from a genuine diamond.  When using a diamond tester there are several things to keep in mind in order to get accurate results, make sure to closely follow a diamond testers instructions that are included with the unit.  Factors that could affect your results include un cleaned stones, a slight touch of the metal it is mounted in, not enough time between each test, so make sure to learn the procedure and practice with already identified stones.

Reference Guide: There are several publications that act as great aides in the gem identification process.  The 3rd edition of “Gem Identification Made Easy” is a great book to keep on hand.  This book includes Refractive Index and Specific Gravity tables, step by step instructions on using gemological tools, helpful hints in spotting synthetics, and much more.  In order to avoid costly mistakes a reference book is a great tool to have.

There are additional test that can be done to separate and identify synthetic and genuine gemstones. A magnet test can be done to help narrow the possibilities of your stone since only certain stones contain iron making them attracted to magnetism.  There are also tests that are considered destructive to the material you are testing.  The hardness test would be considered a destructive test.  By using a tool called a hardness point tester you are able to scratch the surface of the gemstone to determine its hardness in comparison to the Mohs harness scale. A hot point can be used to test for stones that you are suspicious of the possibility of it being impregnated with plastic, wax, or even oils.  When a hot point is touched on the surface the impregnated material will appear to sweat out and be visible, this test is considered a destructive test.  Although destructive testing will help in identifying some stones it is not recommended on transparent faceted gemstones and should only be used with the consent of the stones owner.


Synthetic and Imitation Gemstones:

Synthetic and imitation gems flood the market place.  They have a lot of positive benefits like affordability, striking color, and an ample supply.  Unfortunately due to advancements in technology telling genuine apart from synthetic will require careful examination. Separating genuine from synthetic stones can be a hard task; luckily the characteristics they possess are our keys to their identification.  When buying or selling gemstones, it is crucial to be able to detect whether the material you have is genuine or synthetic stones.  A mistaken identity of a synthetic stone could be a costly mistake and could diminish your reputation.

Synthetic: A synthetic stone is created by man and has basically the same crystal structure, chemical composition, and properties as its natural counterpart.

Imitation: A material that looks like a natural gem but is made of a completely different material of either unnatural or natural product.

Most processes used to create synthetic gems tend to create distinctive features within the gemstone that help separate them from being a genuine stone. It is important to become familiar with the clarity characteristics common in synthetic stones.  Keep yourself up to date with the constantly evolving methods of laboratory creating gemstones.  Magnification will be the key tool in finding these inclusions in order to positively identify a stone as being genuine or synthetic.

The two types of processes used to grow synthetic stones are called the melt process and the solution process.  Melt processes are done by melting chemical mixtures then having the melt recrystallized, these processes are called skull melt, pulling, and the more common of flame fusion.  The solution processes tends to be more expensive to create and takes a longer time to manufacture, this process is done by growing the crystal from a chemical mixture that is controlled by pressure and high temperatures creating gems that closely resemble their natural counterpart. Common names for the stones created by a solution process include flux grown, hydrothermal growth, and seed crystal growth.  Solution process inclusions will usually be harder to spot since they can look very similar to a natural inclusion.

Common Characteristics and Inclusions found in Synthetics:

Curved Growth: Unlike the angular growth seen in natural corundum a flame fusion created stone will create what is called curved striae.  Curved striae is curved growth patterns seen within the stone, this type of growth is easier to view when using diffused lighting.  Some synthetic stones like a Synthetic Star Corundum will have eye visible curved growth pattern making it very easy to identify, be careful not to mistake polishing marks on the surface for curved growth within the gemstone.

Flux: Flux inclusions are seen in synthetic stones that are created by using the flux growth process.  These type of inclusions come in many shapes and forms and range from very coarse with high relief to colorless and possibly having shapes that resemble those of genuine inclusions.  Rod shape and liquid like shapes inclusions in colors of white, yellow, or even brown are common to see within a flux grown stone.

Gas Bubbles:  Be careful when using a gas bubble as a key indicator for identifying synthetic stone. Depending on the nature of the gas bubble will indicate its possibilities of being from a melt process synthetic.  Gas bubbles found in synthetic gemstones tend to be round in shape and may come in large strings or groups of multiple gas bubbles. Usually if a gas bubble is found within a 2 or 3 phase inclusion it would be considered a genuine stone.  If a gas bubble is found alone it typically would indicate synthetic, but be careful since the natural glass moldavite will display gas bubble inclusions that are perfectly round and found alone without other inclusions.

Platelets:  Synthetics manufactured by using solution type processes will leave behind remnants of the containers they are grown in called crucibles.  The material seen in a stone if referred to as a platelet, usually made of platinum or gold.  Platelets tend to resemble metallic triangular or hexagonal shapes.

Fingerprint Like Inclusion:  Flux grown synthetics will show inclusions that resemble a fingerprint pattern, like that ones found in natural stones.  These fingerprint like inclusions are made up of flux, they tend to stand out in high relief of a white or yellow color but can sometimes be colorless.  A flux fingerprint will usually be coarser and less elaborate then a natural fingerprint.

Nailhead Spicule: This type of inclusion resembles a rod like shape with a pointed end resembling the head of a nail.  In a synthetic stone there will usually be more then one found and they will all point in the same direction.  Nailhead spicules are commonly found in hydrothermal grown synthetic Emeralds.

Chevron Growth:  Growth patterns found in hydrothermal type synthetic stones can display a “V” shaped pattern that is referred to as Chevron Growth.  This inclusion tends to be found in a repeated pattern of chevron shape growth that all point in the same direction.

Wispy Veil:  This type of inclusion tends to stand out in high relief and have a ribbon like wispy veil shape to them. Wispy veil inclusions are commonly seen in flux grown synthetic Emeralds.

Columnar Structure:  Columnar structure is a unique feature found in synthetic opal.  When viewed under magnification in a profile angle it will appear as spherical columns, and when viewed from the top in a bird’s eye angle it will appear in a snakeskin like pattern.

When separating natural diamond from its many simulants it will require close attention to details beyond inclusions.  Not all man made synthetic diamonds will contain inclusions like the metallic inclusions found in flux grown, yet there is still ways to separate them without just the use of magnification.  Body color, growth structure, fluorescence, heft, fire, and pavilion flash are the most helpful indications for separating genuine from synthetic diamond; also the aide of a diamond tester is strongly recommended. 

Common Characteristics and Inclusions found in Imitations:

Orange Peel Effect:  The orange peel effect refers to the surface having an uneven and pitted appearing surface, commonly seen on the reflected surface of glass and plastic imitations.

Swirl Marks / Flow Lines: Swirl marks also referred to as flow lines come from when an imitation stone is being made and the ingredients have not been mixed enough.  They look similar to curved striae but will usually appear more coarse and less regular then the appearance of a synthetics curved color banding.

Gas Bubbles: Gas bubbles are commonly found in glass imitation stones.  They take on a more rounded and larger shape then the ones found in genuine and synthetic stones.  When a gas bubble is found near an edge or tip of a swirl mark it would be a large indicator that the stone is an imitation.  When gas bubbles form in large groups within one area of the stone it can easily be mistaken for a fingerprint inclusion, so make sure to look closely at the size and shape of the inclusion.

Tooth Test:  When separating a genuine cultured pearl from an imitation there is a test called the “tooth test” that is very helpful.  Usually when a genuine cultured pearl is rubbed across the front edge of teeth it will have a gritty feel, an imitation will feel smooth.

Heft: We can use our own personal judgment of how heavy a stone feels in our hand, by doing this we are judging its heft.  Plastic imitations will tend to feel much lighter in comparison to their natural counterparts.

Whether you’re a small collector or small business, you can benefit and be more confident in buying or selling gemstones by building your knowledge of gemstone identification.  This is especially important right now, because spending is down in nearly every industry and competition for business is at a *premium*. The knowledge and tools to identify gemstones and synthetics is the backbone of a successful gem business and the ability to quickly make decisions based on the best information is critical. You can become a well-known expert within your industry, by exercising the power of knowledge and hard work.  When you have that kind of status, it becomes easy to get appointments and close sales. HAPPINESS is what you will feel when you achieve your goal. The credentials used for Gemologist (G.G) are created by the Gemological Institution of America where you can find more information on gemstone identification.

In market both natural and synthetic blue sapphires are available. Separation of natural blue sapphire from synthetic by naked eye is nearly impossible, even gemologist fail at certain level to separate them visually. The natural sapphires that we get in market are mostly treated (heat & diffusion). It is again difficult to identify these treatments with naked eyes.

First, never ever separate a blue sapphire from other blue gemstones only on the basis of shade, since blue sapphire comes in all shades of blue.

There are basically 3-4 gemstones that appear (replicate) as blue sapphire. These are Iolite, Tanzanite, Benitoite and Man-made blue glass.

Separation of Blue Sapphire from Iolite: If Iolite is rotated from different direction it will show a shade of yellow which doesn't appear in blue sapphire. So if your blue sapphire doesn't show yellow shade then you can be certain that it is at least not Iolite. Note: Sometimes iron staining in blue sapphire can be the cause for yellow shade. So this is not conclusive evidence.

Separation of Blue Sapphire from Benitoite: Benitoite is a rare gemstone and it is less likely that you will encounter it. However, you can separate Benitoite with "doubling test". When you look through facets of Benitoite towards culet, culet will appear as two. Even inclusions inside Benitoite will sometimes appear as two. This is a confirmatory test as there is only one natural blue stone with doubling effect.

Separation of Blue Sapphire from Tanzanite: Tanzanite shows three shades of blue when looked through dichroscope whereas blue sapphire will show only two shades of blue. You can also separate it with instrument called refractometer. Eye separation of tanzanite from blue sapphire is difficult. It requires certain instruments to get it separated.

Refractometer is an instrument which checks the R.I. (refractive index) of gemstones. It is a "life saver" for many people involved in gemstone trade. One can separate more than 50% of the gemstone solely on the basis of this small instrument. I personally suggest everyone involved in this filed to buy this instrument.

Separation of Blue Sapphire from Man-made blue glass: Glass is a good simulant for all gemstones. All man-made glass has "gas bubble" inclusions which appears as round or oval or elongated. New people might find it difficult to identify "gas bubbles" and separate them from crystal fingerprints but with few practice one can easily separate between "gas bubbles" and "crystal fingerprints".

One more thing to add, blue sapphire (variety of corundum) is generally heavier than all these stones (Iolite, Tanzanite, Benitoite & Blue glass). That is, if the same mass of all the stones are weighted blue sapphire will weight heavier.

A word of caution: If you are even 1% unsure whether your gemstone is genuine or not then it is highly recommended that you get it certified from a reputable gemological lab.

One of the most common identification problems is that of the red faceted stone. We are often reasonably sure that the stone is either a garnet or a corundum (ruby). Sometimes, the owner of the stone declares that they "know it is a real ruby because Grandma gave it to me".

There are a variety of tools and methods that one may use to separate garnets from corundums from red spinel from red zircon. For now, we'll just look at separating garnets from rubies.

The method I'm going to share is a fast and dirty version of something called the Hodgkinson method of gem identification - after Alan Hodgkinson. All you need are your eyes and some clean hands.

Pick up a stone in question and hold it up very close to your eye so that you can look into the table. You must hold it very close without touching - almost like inserting a contact lens, but again not touching. Look literally through the stone at a distant source of light such as a lamp or light bulb. You will see a number of reflections of the distant light source as they bounce around within the stone.

Roll the stone around its axis and tilt it slightly while watching the reflections. Due to the refractive properties of gemstones, each reflection will to some extent appear as a small rainbow. This is a single one of those rainbows as it appears looking through a spinel at the filament of a clear light bulb about 6 feet away.


Gemstone Education

Diamond Education

Jewelry Education

Metals Education





Settings Education

Designs Styles Education

Ring Size Education

Certification Education





Authencity Education

Genuine Education

Buying Online Education

Jewelry Care Education





Gems Care Education

Company Info Education

Sapphire Jewelry Advice

Emerald Jewelry Advice





Ruby Jewelry Education

Antique Jewelry Advice

Gems Mining Education

Eco-Friendly Education

Online Shopping Tips - How to Buy Authentic Jewelry, Genuine Gemstones, Natural Diamonds & Real Gold

What is a Genuine Gemstone? Know All About Genuine Gemstones. Read More.

What is Authentic Jewelry? Know All About Authentic. Read More.

What is Certified Jewelry? Know All About Certified Jewelry. Read More.

What is Fine Designer Jewelry? Know All About Fine Jewelry. Read More.

Genuine Gemstones Identification? Know All About Fine Genuine Gemstones. Read More.

What is Real Gold, Platinum, Silver, Palladium or Fake Gold Filled, Gold Plated? Know All About Real Gold, Platinum, Silver, Palladium, Platinum, Silver, Palladium. Read More.

Jewelry Caring & Cleaning, Ruby Jewelry Caring & Cleaning, Sapphire Jewelry Caring & Cleaning, Emerald Jewelry Caring & Cleaning, Diamond Caring & Cleaning. Read More.

Genuine Diamond Testers, Genuine Gemstones Testers, Real Metal Testers, Authentic Jewelry Testers. ? Know All About Testers to Identify Natural Diamonds, Genuine Gemstones, Real Metals and Authentic Jewelry. Read More.

Sndgems Jewelry Trade Affiliations, Read More and Conflict-Free Diamonds. Read More.
Celebrity News - Red Carpet, Oscars, Celebrity Jewelry. Read More.
Fine-Quality Burma Ruby, Ceylon Ruby, Kashmir Sapphire, Burma Sapphie, Columbian Emerald Guides. Read More.
Complete Online Shopping Guide to ensure safe shopping, getting quality value product with money back guarantee when shopping online for jewelry. Read More.

Identification of Synthetic or Fake Emeralds from Genuine Emeralds Guidelines. Read More.

Identification of Synthetic or Fake Rubies and Sapphires from Genuine Rubies and Sapphires Guides. Read More.

Identification of Ruby, Sapphire Sources - If they're from Burma, Ceylon or Thailand. Read More.
Identification of Emerald Sources - If they're from Columbia, Zambia, Brazil, Africa. Read More.
Gemstone Buying Guides - How to Evaluate, Identify & Select Genuine Gemstones of Good Quality. Read More.

Gemology 101: Gemologists Identification & Valuation of Gemstones Diamonds. Read More.

Identification of Synthetic or Fake Imitation Diamonds from Genuine Diamonds Buying Guides. Read More.

Jewelry Appraisal Education Center - What's Your Jewelry Worth? Jewelry Appraisal, Diamond and Gemstone Appraisals Guidance. Authentic Jewelry: Certified Diamond & Genuine Gemstone Jewelry. Read More.

Learn about Diamond Ring Styles and Designs – Choose your Perfect Engagement Ring, Anniversary Ring or Wedding Ring. Learn More.

Jewelry as a gift for your Man – An elaborate Men’s Jewelry Buying Guide. Read More.

The Worlds Top Jewelry Stores, Online Shopping Guides. Read More.

Complete Online Shopping Guide to ensure safe, secure online jewelry shopping. Read More.

Gemstone Information Center

About Gemstones

All About Emeralds

All About Rubies

All About Sapphires

About Birthstones

Gemstones FAQ

Ethical Gemstones

Gemstones Mining

Famous Gemstones

Largest Gemstones

Genuine Gemstones

Natural Gemstones

Gems Laboratory

Popular Gemstones

Gemstones Care

Gemstones Color

Gemstones Clarity

Gemstones Cut

Gold Recycling

Real Gold

Real Platinum

Organic Jewelry

Gemstone Myths

Ruby Jewelry Care

Emerald Jewelry Care

Buying Ruby Jewelry    Online Tips

Buying Emerald Jewelry    Online

Buying Sapphire Jewelry    Online

Sapphire Jewelry Care

Chinese Horoscope

Genuine Jewelry

Fair Trade Jewelry

Gem Enhancements

Gems Treatments

Jewelry Secrets

Jewelry Vigilance    Committee

Buying Sapphire Ring    Online

Buying Ruby Ring Online

Buying Emerald Ring    Online

Buying Diamond Ring    Online

Online Shopping Tips

Buying Diamond Jewelry    Online, Online Jewelry    Shopping

Buying Jewelry Online

Certificate of    Authenticity

Only Authentic Jewelry

,Certified Jewelry,

Reliable Jewelry   Shopping


Testimonials | Buy Wholesale | Sales Rep | Distributorship | Sell Your Designs | Job Openings  | Press Releases | In The News

How to Order | Certified Jewelry | Order Status | 30 Day Returns | Authenticity Certificate | Satisfaction Guarantee | How Can I Get Refund | Free Shipping | Next Day Shipping | Intl Shipping

 Safe Secure Payment Options  | No Additional Taxes | International Custom Duties & Taxes  | Check Your Ring Size | International Ring Sizing | Ring Engraving Options | Why

Diamond Bridal Jewelry  | Diamond Ring Settings  | Buying Jewelry Online Safely  | Diamond Buyer's Guide  | Free Diamond Appraisal  | Diamond Grading  | GIA's Diamond Report

Certified Diamond Rings | Ruby Diamond Rings | Emerald Diamond Rings | Sapphire Rings | Gemstone Jewelry | Colored Diamond Rings | Diamond Eternity Rings | Tension Set Rings

Diamond Engagement Rings | Diamond Wedding Rings | Diamond Anniversary Rings | Diamond Three Stone Rings | Diamond Five Stone Rings | Pearl Jewelry | Shop Jewelry Online


Get to Know All About Diamonds, Gemstones, Fine Jewelry Buying before Buying Jewelry Online  | Shop Fine Designer Jewelry Online

Why Buy From Us | References | Site Security | Guarantee | Return Policy | Buyer's Tips | FAQ | Site Map | Education | Live Help | Search Our Website | Customer Service

Contact Us | Payment Options | Sales Tax | Shipping Charges | Service Center | Order Tracking | Platinum Facts | Ring Sizing | Engraving Options | Polishing | How To Order

Conflict Free Policy| After Sales Service | Legal | Terms & Conditions | Disclaimer | Product Policies | Security | Customer Feedback | Our Jewelry Blog | Fashion News

EDUCATION & GUIDANCE: Engagement Ring Guides | Wedding Ring Guides | Diamond Buying Guides | Designer Clothes Guides | Designer Handbags Guides | Eternity Ring Guides | Ruby Ring Guides | Designer Home Decor Guides | Tension Set Ring Guides | Sapphire Ring Guides | Emerald Ring Guides | Site Updated April 3, 2012

Customer Service Address: 7W 45th Street #707 New York, NY 10036 Maufacturing Address: 7W 45th Street #707 New York, NY 10036. We welcome visitors to our New York office. Office visits are by appointment only. Please contact our Customer Service center to schedule an appmnt with a fashion stylist expert/jewelry expert.